CHROMATOGRAPHIC BEHAVIOUR AND STRUCTURAL UNITS OF CONDENSED PHOSPHATES

II. INFLUENCES OF DEVELOPING SOLVENTS

TAKAYA IIDA AND TAKEO YAMABE
The Institute of Industrial Science, The University of Tohyo, 22-I, Roppongi 7-chome, Minato-ku, Tokyo ro6 (Japan)
(Received October I3th, I970)

SUMMARY

Influences of the components (acidic solvents: water, ammonia water, trichloroacetic acid, and acetic acid; basic solvents: water and ammonia water) and pH values of developing solvents on R_{F}, values, the ratio of the thickness of the mobile phase and the stationary phase, and free energy necessary to transport the structural units of condensed phosphates from the stationary phase to the mobile phase were examined. They are greatly influenced by the water content and pH value. The influences of the other components are slight.

INTRODUCTION

We reported in a previous paper ${ }^{1}$ that the relationships between R_{M} values and the structural units (the middle PO_{4} group, the end PO_{4} group, and the single [orthophosphate] PO_{4} group) of condensed phosphates were obtained and that the ratio of the thickness of the mobile phase to the stationary phase and the free energy necessary to transport 1 mole of each structural unit from the stationary to the mobile phase can be calculated by the use of these relationships.

Herein, we rewrite these relationships
for the metaphosphate ion consisting of m phosphorus atoms
$R_{M(m-\text { meta })}=-\log \left(A_{M} / A_{S}\right)+m \Delta \mu_{\text {middle }} / 2.3 R T$
for the pyrophosphate ion
$R_{M(\text { pyro })}=-\log \left(A_{M} / A_{S}\right)+2 \Delta \mu_{\mathrm{end}} / 2.3 R T$
for the orthophosphate ion
R_{M} (ortho) $=-\log \left(A_{M} / A_{S}\right)+\Delta \mu_{\text {ortho }} / 2.3 R T$
for the polyphosphate ion consisting n phosphorus atoms
$R_{M(n-\text { poly })}=-\log \left(A_{M} / A_{S}\right)+2 \Delta \mu_{\text {end }}{ }^{\prime} / 2.3 R T+(n-2) \Delta \mu_{\text {middle }} / 2.3 R T$
where $\left(A_{M} / A_{S}\right)$ is the ratio of the thickness of the mobile phase to the stationary phase, and $\Delta \mu_{\text {middle, }} \Delta \mu_{\text {end }}, \Delta \mu_{\text {ortho }}, \Delta \mu_{\text {middle }}{ }^{\prime}$ and $\Delta \mu_{\text {end }}{ }^{\prime}$ are the free energy neces-
sary to transport I mole of a middle group of metaphosphate, an end group of pyrophosphate, and the ortho group, middle and end groups of polyphosphate, respectively.

In general, developing solvents used in paper chromatography (PC) and thinlayer chromatography (TLC) of condensed phosphates are mixed solutions of some alcohols and water. They are roughly divided into acidic and basic solvents, and trichloroacetic acid, ammonia water, etc., are added to the mixed solutions. Acidic solvents are suitable for the separation of ortho-, pyro-, and polyphosphates and basic solvents are suitable for the separation of metaphosphates.

Ebel ${ }^{2}$ described the influence of the water content in the acidic and basic solvents on R_{F} values and the influence of the addition of a small quantity of ammonia water to the acidic solvents on R_{F} values. Thilo and Feldmann ${ }^{3}$ described those influences and the influence of pH values of the solvents on R_{F} values. In this paper, we studied the influences of the water content and the other components and pH values of the solvents on R_{r} values, $A_{M} / A_{s}, \Delta \mu_{\text {mlddle }}, \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }}$. We did not examine the influences of $\Delta \mu_{\text {middle' }}{ }^{\prime}$ and $\Delta \mu_{\text {end }}{ }^{\prime}$ because there seem to be mutual interactions between the middle and end groups of the polyphosphates.

The following influences are examined in this paper. (a) acidic solvents: water content, quantity of ammonia water, quantity of trichloroacetic acid, quantity of

TABLE I

DIVELOPING SOLVENTS

Solvent	Ammonia water $(28 \%, m l)$	Trichloroacetic acid (g)	Acetic acid (glacial, ml)	Water contenta (\%)	Alcoholb	$p H^{c}$
AI-30	0.25	5.0	I. 0	30	iP	1. 62
AI-40	0.25	5.0	1.0	40	iP	I. 47
AI-50	0.25	5.0	1.0	50	iP	I. 33
A2-0.50	0.50	5.0	1.0	40	iP	I. 67
A2-0.75	0.75	5.0	1.0	40	iP	1.82
A2-1.00	1.00	5.0	1.0	40	iP	2.03
A2-I.25	1.25	5.0	1.0	40	iP	2.37
A2-1.50	1.50	5.0	1.0	40	iP	3.33
A3-I	0.25	1.0	1.0	40	iP	2.80
A_{3-3}	0.25	3.0	1.0	40	iP	1.70
A_{4-2}	0.25	5.0	2.0	40	iP	I. 50
A_{4-3}	0.25	5.0	3.0	40	iP	1.47
A5-0.20	0.20	2.0	1.0	40	iP	1.89
A5-I	1.0	2.0	I. 0	40	iP	5.59
A5-2	2.0	2.0	1.0	40	iP	8.33
A5-4	4.0	2.0	1.0	40	iP	9.20
BI-30	1.0			30	iP-iB	-
Br-40	1.0			40	iP-iB	II. 39
Br-50	1.0			50	iP-iB	-
B2-2	2.0			40	iP-iB	II. 45
B2-4	4.0			40	iP-iB	11.86

[^0]acetic acid; (b) basic solvents: water content, quantity of ammonia water; and (c) pH values of solvents.

EXPERIMENTAL

Developing solvents

The compositions of developing solvents are shown in Table I. pH values are also given.

Thin layers

In 60 ml of water were suspended I 5 g of Avicel (FMC Corporation). Thin-layer plates were prepared as usual ($250 \mathrm{~m} \mu$).

Samples of phosphates

A solution of mixed metaphosphates was prepared according to Thilo and Schulke ${ }^{4}$. Solutions of sodium salts of ortho-, pyro-, tripoly-, trimeta-, tetrameta-5, and hexameta- ${ }^{6}$ phosphates were used as standards.

Procedure

After the solutions of the phosphates had been spotted, the thin-layer plate was allowed to equilibrate with the vapour of the developing solvent for 2 h ; the phosphates were then developed in a saturation chamber (ascending method). The temperature was maintained at 5° in an air bath (Coolnics, Komatsu-Yamato). When the solvent had travelled 10 cm from the application point of the phosphates, the plate was taken out and dried in air. The phosphates were then hydrolysed with an aqueous nitric acid solution ($\mathrm{I}: \mathrm{I}$) and visualised with ammonium molybdate and stannous chloride ${ }^{7,8}$.

results and discussion

$R_{r^{r}}$ values obtained and $A_{M} / A_{S}, \Delta \mu_{\text {middle }}, \Delta \mu_{\mathrm{end}}$, and $\Delta \mu_{\text {ortho }}$ calculated are listed in Table II.

Acidic solvents

Water content ($A x-30, A x-40$, and $A x-50$). The plots of R_{F} value $v s$, water content, of R_{M} value $v s$. degree of condensation, and of $A_{M} / A_{S}, \Delta \mu_{\text {middle }}, \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }}$ vs. water content are shown in Figs. 1, 2, and 3. In proportion as the water content increases, the R_{F} value increases by a great margin. A_{M} / A_{S} increases by a great margin, $\Delta \mu_{\text {ortho }}$ also increases, $\Delta \mu_{\text {middle }}$ slightly decreases and $\Delta \mu_{\text {end }}$ is almost constant. It is thought that the R_{F} value is greatly influenced by the water content and that this depends on the great increase of A_{M} / A_{S}.
'Quantity of ammonia water (A1-40, A2-0.50, A2-0.75, A2-I.00, Az-r.25, and $A 2-$ I. 50). The plots of R_{F} value vs. quantity of ammonia water, and of A_{M} / A_{S}, $\Delta \mu_{\text {middle }}, \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }} v s$. quantity of ammonia water are shown in Figs. 4 and 5. In proportion as the quantity of ammonia water increases, the R_{F} values of pyro- and metaphosphates slightly decrease, but the R_{F} value of orthophosphate is
TABLE II

Phosphates	A I-30	A I-40	A 1 -50	A2-0.50	A $\mathbf{2 - 0 . 7 5}$	A2-I. 00	A2-1.25	A2-I. 50	A3-I	A3-3	A4-2
Ortho (0)	0.70	0.80	0.83	0.80	0.78	0.78	0.78	0.78	0.78	0.8I	0.81
Pyro (Py)	0.38	0.56	0.73	0.54	0.47	0.43	0.38	0.36	0.55	0.61	0.61
Tripoly (TrP)	0.17	0.44	0.64	0.38	0.29	0.26	0.21	0.20	0.46	0.45:	0.50
Trimeta (TrM)	0.12	0.36	0.65	0.30	0.22	0.19	0.17	0.18	0.34	0.37	0.38
Tetrameta (TtM)	0.06	0.20	0.54	0.16	0.12	0.09	0.09	0.09	0.19	0.24	0.21
Pentameta (PeM)	0.03	0.13	0.46	0.10	0.07	0.05	0.05	0.05	0.14	0.16	0.15
Hexameta (HexM)	O.OI	0.07	0.38	0.06	0.03	0.02	0.02	0.02	0.07	0.08	0.08
Heptameta (HepM)		0.02	0.30	0.02	0.02				$0.02{ }^{\text {a }}$	$0.03{ }^{\text {a }}$	
Octameta (OctM)			0.22								
Nonameta (NorM)			0.15								
Decameta (DecM)			O.II								
A_{M} / A_{S}	1.26	3.03	5.81	2.45	2.52	2.54	2.04	2.28	3.10	3.90	3.75
S $\mu_{\text {middle }}$	410	328	211	341	400	440	417	429	339	345	347
$\Delta \mu_{\text {end }}$	198	245	211	202	338	335	333	3^{87}	257	252	242
$\Delta \mu_{\text {ortho }}(\mathrm{cal} / \mathrm{mole}$)	-345	- 115	96	-27I	-190	-185	-305	-244	-74	-50	-70

Phosphates	A4-3	A5-0.50	$A_{5}-I$	A_{5-2}	$A_{5} 4$	BI-30	BI-40	Br-50	B2-2	B2-4
Ortho (O)	0.82	0.80	0.39	0.14	0.13	0.13	0.30	0.66	0.29	0.28
Pyro (Py)	0.60	0.54	0.17	0.04	0.04	0.05	0.20	0.47	0.15	0.15
Tripoly (TrP)	0.48	0.40	0.08	0.02	0.02	0.04	0.21	-	0.17	0.18
Trimeta (TrM)	0.38	0.37	0.21	0.25	0.26	0.23	0.59	0.86	0.58	0.57
Tetrameta (TtM)	0.23	0.21	0.11	0.13	0.13	0.11	0.48	0.80	0.44	0.45
Pentameta (PeM)	0.14	0.13	0.05	0.09	0.08	0.06	0.39	0.76	0.36	0.36
Hexameta (HexM)	0.08	0.07	0.02	0.04	0.04	0.03	0.32	0.71	0.28	0.29
Heptameta (HepM)				0.02^{8}	$0.02{ }^{\text {3 }}$		0.25	0.66	0.24	
Octameta (OctM)Nonameta (NonM)Decameta (DecM)										
A_{s} / A_{S}	4.14	4.24	3.61	2.18	2.67	2.65	4.04	13.20	3.70	4.10
$\Delta \mu_{\text {middle }}$	358	502	473	368	383	413	199	155	202	216
$\Delta \mu_{\text {end }}$	281	360	794	1120	1150	1084	769	747	842	870
$\Delta \mu_{\text {ortho }}(\mathrm{cal} / \mathrm{mole})$	-53	33	958	1490	1590	1592	1241	1060	1219	1302

${ }^{\text {a }}$ Removed from the least squares calculation.
J. Chromatog., 54 (1971) 413-42I

Fig. 2. Plots of $R_{M} v s$. degree of condensation (m). $\bigcirc, 30 \% ; \triangle, 40 \% ; \times, 50 \%$.
almost identical. A_{M} / A_{S} and $\Delta \mu_{\text {ortho }}$ are almost the same, but $\Delta \mu_{\text {middle }}$ and $\Delta \mu_{\text {end }}$ seem to increase slightly.

Quantity of trichloroacetic acid and acetic acid (A3-I, A3-3, and Ar-40, and $A I-40, A 4-2$, and $A 4-3)$. The plots of R_{F} value $v s$. quantity of trichloroacetic acid and acetic acid, of $A_{M} / A_{s}, \Delta \mu_{\text {middle }} \Delta \mu_{\mathrm{end}}$, and $\Delta \mu_{\mathrm{or} \text { ho }} v s$. quantity of trichloroacetic acid and acetic acid are shown in Figs. 6, 7, 8, and 9. Even if the quantity of trichloro-

Fig. 3. Fiots of $A_{M} / A_{s}, \Delta \mu_{\text {midale }} \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }} \nu s$. water content. \times, middle; Δ end; O. ortho: $\boldsymbol{A}_{M} / A_{S}$.

Fig. 4. Plots of R_{F} vs. quantity of ammonia water. $O, O ; \times, P y ;-\operatorname{TrM} ; \triangle, T t M ; \boldsymbol{P}, P \mathrm{M}$; ∇, HexM.

Fig. 5. Plots of $A_{M} / A_{S}, \Delta \mu_{\text {midale }} \Delta \mu_{\mathrm{end}}$, and $\Delta \mu_{\mathrm{ortho}} v s$, quantity of ammonia water. \times, middle; \triangle, end; O, ortho; A_{M} / A_{S}.
acetic acid and acetic acid is changed, $R_{F}, A_{M} / A_{S}, \Delta \mu_{\text {middle }}, \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }}$ are almost constant.

Basic solvents (Br-30, Br-40, and Br-50)
Water content (Bx-30, Bx-40, and BI-50). The plots of R_{F} value vs. water content, of R_{M} value $v s$. degree of condensation, and of $A_{M} / A_{S}, \Delta \mu_{\text {middle }}, \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }} v s$. water content are shown in Figs. IO, II, and I2. As in the case of the acidic

Fig. 6. Plots of R_{F} vs. quantity of trichloroacetic acid. $O, O ; \times, \operatorname{Py} ; \operatorname{OrM} ; \triangle, \mathrm{TtM} ; \mathrm{m}, \mathrm{PcM}$; ∇, HexM.

Fig. 7. Plots of $A_{M} / A_{s,} \Delta \mu_{\text {midde }} \Delta \mu_{\text {end }}$, and $\Delta!\mu_{\text {nrthn }} v s$, quentity of trichloroacetic acid. \times, middle; \triangle, end; 0 , ortho; $\boldsymbol{O}_{\text {, }} A_{M} / A_{S}$.
Fig. 8. Plots of R_{F} vs. quantity of acetic acid. $O, O ; \times, \operatorname{Py} ; \operatorname{TrM} ; \triangle, T t M ; ■, \operatorname{PeM} ; \nabla, H e x M$.
J. Chronatog., 54 (1971) 413-421

Fig. 9. Plots of $A_{M} / A_{S}, \Delta \mu_{\text {midde }} \Delta \mu_{\text {end }}$ and $\left\langle\mu_{\text {ortho }} v s\right.$. quantity of acetic acid. \times, micldle; Δ, cncl; \cap, ortho; A_{M} / A_{S}.
 Fig. In. Plots of $R_{M} v s$. degree of condensation $(m) .0 .30 \% ; \triangle, 40 \% ; \times, 50 \%$.
solvent, the R_{F}, value increases by a great margin, in proportion to the increase of the water content. A_{M} / A_{S} increases by a great margin, but $\Delta \mu_{\text {middle }}, \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }}$ decrease slightly.

Quantity of ammonia water ($B r-40, B 2-2$, and $B 2-4$). The plots of R_{F} value vs. quantity of ammonia water, and of $A_{M} / A_{s}, \Delta \mu_{\text {middle }}, \Delta \mu_{\mathrm{end}}$, and $\Delta \mu_{\text {ortho }} v s$. quantity

Fig. 12. Plots of $A_{M} / A_{s}, \Delta \mu_{\text {midate }}, \Delta \mu_{\text {end }}$ and $\Delta \mu_{\text {ortho }}$ vs. water content. \times, middle; Δ, end; - ortho: ©. A_{M} / A_{S}.

Fig. 13. Plots of R_{F} vs. quantity of ammonia water. $O, O ; \times, P y ; O, T r M ; \triangle, T t M ; m, P c M$; ∇. HexM.

Fig. 14. Plots of $A_{M} / A_{S}, \Delta \mu_{\text {madte }} \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }} v s$. quantity of ammonia water. \times, middle; \triangle, end; O, ortho; $\boldsymbol{O}, A_{M} / A_{S}$.

Fig. 15. Plots of $R_{\boldsymbol{F}}$ vs. pH of solvent. $\mathrm{O}, \mathrm{O} ; \times$, Py;
 Fig. 16. Plots of $A_{M} / A_{S}, \Delta \mu_{\text {midale, }} \Delta \mu_{\text {end. }}$ and $\Delta \mu_{\text {ortho }} \nu s$. pH of solvent. \times, midelle; \triangle, end;
O, ortho; A_{M} / A_{S}.
of ammonia water are shown in Figs. 13 and I4. Even if the quantity of ammonia water is changed, $R_{F}, A_{M} / A_{S}, \Delta \mu_{\text {middle }}, \Delta \mu_{\text {end }}$, and $\Delta \mu_{\text {ortho }}$ are almost constant. This is not the case with the acidic solvent.
pH value of solvent (A5-0.20, A5-T, A5-2, and A5-4). The plots of R_{F} value vs. pH of the developing solvent, and $A_{M} / A_{S}, \Delta \mu_{\text {middle }}, \Delta \mu_{\mathrm{cnd}}, \Delta \mu_{\mathrm{ortho}} v s$. pH of the developing solvent are shown in Figs. I5 and I6. When the pH of the developing solvent is increased, the $R_{\boldsymbol{r}}$ values of ortho- and pyrophosphates decrease by a large margin and the R_{F} of metaphosphates decreases slightly. A_{M} / A_{S} and $\Delta \mu_{\text {middic }}$ decrease slightly, but $\Delta \mu_{\text {end }}$ and $\Delta \mu_{\text {ortho }}$ increase by a large margin. As shown in Fig. 5, even if the quantity of ammonia water is increased, $\Delta \mu_{\text {end }}$ increases slightly and $\Delta \mu_{o r t h o}$ is almost constant as long as the pH change is not too large. Thus it is thought that the increase of $\Delta \mu_{\text {end }}$ and $\Delta \mu_{\text {ortho }}$ depends on the pH increase of the developing solvent, not on the increase of the quantity of ammonia water. The dependence of the $R_{\boldsymbol{F}}$ value of phosphates on the pH of the developing solvent is similar to that in the case of paper chromatography of metal ions (ortho- and pyrophosphates- $\mathrm{Cu}^{2+}, \mathrm{Ba}^{2+}$, and Pb^{2+}, metaphosphates $\left.-\mathrm{HgCl}_{2}\right)^{9}$.

REFERENCES

[^1]
[^0]: a Aqueous solutions (30,40 or 50 ml) containing 3 components (acidic solvents) or r component (basic solvents) were diluted to 100 ml with alcohols.
 ${ }^{b} \mathrm{iP}=$ isopropyl alcohol $; \mathrm{iP}-\mathrm{iB}=$ isopropyl-isobutyl alcohol ($\mathrm{I}: \mathrm{I}$).
 ${ }^{\mathbf{c}} \mathrm{pH}=$ reading of the pH meter (glass electrode).

[^1]: i T. Iida and T. Yamabe, $/$. Chromatog., 41 (19Gg) 163.
 2 J.-P. Ebil, Mikrochim. Acta, (1954) 679.
 3 E. Thilo and W. Heldmann, Z. Anorg. Allgem. Chem., 298 (r959) 3 I 6.
 4 E. Thilo and U. Schulke, Z. Anorg. Allgem. Chem.. 43 I (i965) 297.
 5 R. N. Bell, L. F. Audrieth and O. F. Hill, Ind. Eng. Chem., 44 (1952) 568.
 6 E. J. Grifitith And R. N. Buxton, Inorg. Chem., 4 (Ig65) 549.
 7 E. Karl-Kroupa, Anal. Chem., 28 (1956) 1091.
 8 D. N. Bernhard and W. B. Chess, Anal. Chem., 3 I (1959) 1026.
 9 G. Ackermann (translated by T. Yoshimori), Bunseki Kagaku (Japan Analyst), iG (I9G7) 636.

